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number of discrete velocities allowed is consistent with the
simple lattice structures of LGA models. In other words,A new lattice Boltzmann algorithm is proposed to simulate the

Navier–Stokes equation on arbitrary nonuniform mesh grids. The the discretization of physical space is coupled with the
new algorithm retains the advantages of the lattice Boltzmann discretization of momentum space. The first LB model
method: parallel of algorithm, ease of programming, and ability to was a floating-point version of its LGA counterpart—eachincorporate microscopic interactions. A simulation of flow in a two-

particle in the LGA model (represented by a single-bitdimensional symmetric channel with sudden expansion is carried
Boolean integer) was replaced by a single-particle distribu-out using the new algorithm on a nonuniform mesh. The results of

the simulation are in excellent agreement with previous experimen- tion function, fa , in the LB model (represented by floating-
tal and numerical results. Q 1996 Academic Press, Inc. point number). The lattice structure and the evolution rule

remained the same [1]. Two important improvements to
enhance the computational efficiency have been made for

I. INTRODUCTION
the LB method: the linearization of the collision operator
[2] and the BGK approximation [12] (single relaxationIn recent years, the lattice Boltzmann (LB) method
time approximation) [3]. The uniform lattice structure[1–5] has attracted much attention in the computational
was unchanged.physics and engineering communities. The LB method has

A nonuniform mesh is certainly desirable in many practi-demonstrated its ability to simulate single-component
cal applications. What inhibits the use of a nonuniformhydrodynamics [1–3], multiphase and multicomponent
grid in previous LB methods is the coupling of the discreti-fluids [6] including particulate suspensions [7], magneto-
zation of physical and momentum spaces. The minimalhydrodynamics [8], reaction-diffusion systems [9], flows
advection distance of the density distributions in a singlethrough porous media [10], and other complex systems
time step must be equal to the minimal lattice separation.[4, 5]. Meanwhile, the LB method has demonstrated a
The density distributions have to move from one latticesignificant potential and broad applicability with numer-
site to another in a single step to warrant the followedous computational advantages, including the parallel of
collision process. This feature is inherited from the LGA,algorithm, the simplicity of programming, and the ability
but is not necessary for the LB method. Since the primeto incorporate microscopic interactions. However, the
variable in LB method is the single particle distributionmethod also has some undesirable shortcomings. One of
function, the exactness of the Boolean operation in thethese shortcomings, which is addressed specifically in this
LGA method is no longer mandatory and various approxi-paper, is the uniformity of its mesh grids.
mations can be employed.Historically, the LB method evolves from the lattice-

In this paper, we propose an LB algorithm for nonuni-gas automata (LGA) method [11]. Consequently, the LB
form mesh grids. In this new algorithm, the computationalmethod inherits some features from its precursor, the LGA
mesh is uncoupled from the discretization of momentummethod. In the lattice-gas automata, the dynamics of parti-
space and it can have an arbitrary shape. Collisions stillcles evolving on a lattice space consists of two steps:
take place on the grid points of the computational mesh.(1) particles at the same site collide according to a set of
After a collision, the density distributions move accordinghard-sphere particle collision rules which conserve mass,
to their velocities. Although the density distributions atmomentum, and energy (for multispeed models) at each
the grid sites now may not be exactly determined, theylattice site; (2) after colliding, particles advect to the next
can always be calculated using interpolation. After interpo-lattice sites in the direction of their velocities. The small
lation, collision and advection steps are repeated.

This paper is organized as follows. Section II briefly1 E-mail address: xyh@t13.lanl.gov.
2 E-mail address: luo@t13.lanl.gov. reviews the 9-bit lattice BGK model as an example of
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implementing the LB algorithm on nonuniform mesh and r0 is the constant average density in the system. The
pressure, p, and the velocity, u, in ga are calculated bygrids. Section III describes the general procedure to imple-

ment the LB algorithm on a nonuniform mesh. Section IV
presents numerical results of simulations of flow in a 2D p 5 O

a

pa , (4a)
sudden expansion channel using the 9-bit lattice BGK
model on nonuniform mesh grids. Section V discusses the

u 5
1

r0c2
s
O

a

ea pa . (4b)results and concludes the paper.

II. NINE-BIT INCOMPRESSIBLE LATTICE
Through the Chapman–Enskog procedure, the aboveBGK MODEL

model, Eqs. (1)–(4), recovers to the incompressible
In this paper, we use the 9-bit incompressible lattice Navier–Stokes equations

Boltzmann model [13] to illustrate the implementation of
the lattice Boltzmann method on nonuniform mesh grids. 1

r0c2
s

­p
­t

1 = · u 5 0, (5a)In the incompressible lattice Boltzmann model, the pres-
sure distribution function, pa , instead of the single-particle
distribution function, fa , is used in the evolution equation ­u

­t
1 u · =u 5 2

1
r0

=p 1 n=2u, (5b)of the system. The evolution equation of the system is

where the kinetic viscosity ispa(x 1 ea dt , t 1 dt ) 2 pa(x, t) 5
1
t

[ga(x, t) 2 pa(x, t)], (1)

where t is the dimensionless relaxation time and ga is the n 5
(2t 2 1)

6
d 2

x

dt
.

equilibrium pressure distribution function. The ea’s, a [
h0, 1, 2, ..., 8j, are the nine discrete velocities in the system

In the small Mach number limit (equivalent to the incom-defined by
pressible limit), the first term in the left-hand side of the
continuity equation, Eq. (5a), is negligible. Thus, the in-
compressible Navier–Stokes equations are obtained (see
Ref. [13] for details of the incompressible lattice Boltz-ea 55

0, a 5 0,

(cos[(a 2 1)f/2], sin[(a 2 1)f/2])c, a 5 1, 2, 3, 4,

Ï2(cos[(a 2 5)f/2 1 f/4],

sin[(a 2 5)f/2 1 f/4])c, a 5 5, 6, 7, 8.

(2)
mann model).

III. LATTICE BOLTZMANN MODEL FOR
NONUNIFORM GRIDIn the above equation, c 5 dx /dt , where dx and dt are

the lattice separation and the time step, respectively. The
In existing LB models, the computational mesh is re-pressure distribution function, pa , is related to the density

stricted to a uniform one and the lattice separation is equaldistribution function, fa , by
to the basic advection length, dx—the minimal distance
that the density distributions are allowed to travel in apa ; c2

s fa ,
given time step, dt . This constraint is fundamental and
cannot be relaxed for the LGA models. However, for LBwhere cs is the sound speed and it is c/Ï3 for the 9-bit LB
models, this constraint becomes unnecessary because themodel. The equilibrium pressure distribution, ga , for the
density distributions, pa or fa , are continuous functions in9-bit incompressible LB model is chosen to be
both space and time. The value of a function at one location
in space can always be approximately interpolated from
the values of the function at the neighboring locations. Thega 5 wa[p 1 r0((ea · u) 1

3
2

(ea · u)2

c2 2
1
2

u2 )], (3)
assumption here is that the function must be sufficiently
smooth (differentiable up to the order consistent with the

where interpolation order).
In what follows, we shall consider a nonuniform rectan-

gular computational mesh. Let Xi, j ; (Xi , Yj ) denote a
grid point on an arbitrary rectangular computational meshwa 5 5

Fl , a 5 0,

Al , a 5 1, 2, 3, 4,

dhA , a 5 5, 6, 7, 8,
in a Cartesian coordinate system. The dXi and dYj denote
grid sizes
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dXi 5 Xi11 2 Xi , (6a) The 9-bit BGK model for incompressible flow is used to
simulate the 2D flow in the system. The geometric configu-

dYj 5 Yj11 2 Yj . (6b)
ration of the 2D channel with sudden expansion is illus-
trated in Fig. 1.

The computational grid can be sparser or denser than the
The Reynolds number for the system is defined as

regular lattice mesh, depending on the required flow reso-
lution. In the following text, we define the ratio of nonuni-
form to uniform grid sizes as

Re 5
hU0

2n
, (8)

r i
x 5 dXi /dx , (7a)

r j
y 5 dYj /dy . (7b) where h is the height of the entry section, U0 is the maxi-

mum inlet velocity, and n is the kinematic viscosity. The
For the 9-bit LB model in 2D space, the mesh is a uniform Reynolds number is chosen to be 26.0 for our simulations.
square lattice grid with dx 5 dy . The evolution of the LB
system on a nonuniform mesh consists of three steps: colli- B. Boundary and Initial Conditions
sion, advection, and interpolation. The initial values of pa

At the entrance (upstream), a parabolic profile of the(or fa ) are specified at each grid point (Xi , Yj ). Then, the
horizontal component of velocity, ux , with a maximumsystem evolves in the following three steps:
U0 5 0.1c, is enforced, and the vertical component of

1. Since the pre-collision value pa(Xi, j , t) is known on velocity, uy , is set to zero. At the exit (downstream), a
each grid point (Xi , Yj ), the macroscopic quantities, such constant pressure boundary condition
as p and u, can be computed at each point (Xi , Yj ). Also,
the equilibrium distribution function, ga , can be con-

p(x 5 Nx , t) 5 1.0r0c2structed on each grid point (Xi , Yj ), and the collision
process can be completed according to Eq. (1). The postcol-
lision value of pa(Xi, j , t) is henceforth obtained;

is enforced. At the walls, a nonslip boundary condition is
2. After the collision, advection takes place, and the applied [14].

pa(Xi, j 1 ea dt , t 1 dt ) are obtained; The average density, r0 , is set to be 1.0. And the initial
3. The values of pa(hXi, j j, t 1 dt ) on the mesh grids value of the velocity field is set to be zero in the interior

hXi, j j are computed from the values of pa(hXi, j 1 ea dt j, of the channel.
t 1 dt ) on the points hXi, j 1 ea dt j by interpolation. Then
the collision and the advection process are repeated. C. Meshes
So far as the evolution process is concerned, the only dis- Three types of meshes are used in the simulations: uni-
tinction of the new algorithm to other existing LB algo- form square mesh grid (Fig. 1a), uniform rectangular mesh
rithms is the addition of the new interpolation step. grid (Fig. 1b), and nonuniform rectangular mesh grid (Fig.

1c). The system size of the square mesh grid is Nx 3
IV. NUMERICAL RESULTS Ny 5 385 3 49. For the uniform square mesh (lattice), the

simulation is carried out without any interpolation, i.e.,
A. Flow in a 2D Symmetric Channel with

rx 5 ry 5 1. The results obtained on the uniform square
Sudden Expansion

mesh grid are used to benchmark the results obtained on
the other two meshes involving interpolation schemes.The flow in a symmetric channel with sudden expansion

is a hydrodynamic system with an array of interesting phe- Three uniform rectangular meshes were used in the sim-
ulation. The system sizes of the three meshes are Nx 3nomena, including symmetry breaking bifurcations, Hopf

bifurcations, and a specific route to turbulence [15]. The Ny 5 193 3 49, 97 3 49, and 49 3 49, corresponding to
rx 5 2, 4, and 8, respectively. In all meshes, ry is fixed tosystem has been studied both experimentally [16–18, 15,

19] and numerically [15, 20, 21]. Although the system pos- be unity, which is the same as in the previous LB methods.
Fig. 1b illustrates the mesh grids with rx 5 8, the coarsestsesses complicated hydrodynamic phenomena, the geome-

try of this system is very simple. It is relatively easy to one among the rectangular meshes.
For the nonuniform grid system, the system size of thegenerate a mesh for this system. A 2D channel with an

expansion ratio of 1 : 3 and an aspect ratio of 1 : 8 is studied mesh is Nx 3 Ny 5 43 3 49 (Fig. 1c). Throughout the
entire mesh, ry is always equal to 1, while rx varies monoton-here. It has been shown experimentally that, at a moderate

value of Reynolds number, the flow in the channel with ically from 1 to 32 along the flow direction from upstream
to downstreamsuch a geometric configuration is two-dimensional [15].
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FIG. 1. Three meshes used in the simulations: (a) uniform square lattice mesh for the 9-bit LB model; (b) uniform rectangular mesh;
(c) nonuniform rectangular mesh.

Laboratory. In each run, the following inequality is used
as the criterion of convergence,

rx 5 1, 0.0 # x/h # 0.75,

rx 5 2, 0.75 , x/h # 1.5,

rx 5 4, 1.5 , x/h # 3.0,

rx 5 8, 3.0 , x/h # 6.0,

rx 5 16, 6.0 , x/h # 12.0,

rx 5 32, 12.0 , x/h # 24.0.

(9) oi, j iu(Xi, j , t 1 dt) 2 u(Xi, j , t)i
oi, j iu(Xi, j , t)i

# 1.0 3 1026, (10)

where i · i is the L2 norm. Typically, it takes about 50,000
time steps of iteration to achieve the above criterion.

Figure 2 shows the profiles of ux at x/h 5 2.5, and 5.0,Because the value of rx monotonically increases streamwise
respectively. The profiles obtained with three differentalong the channel, the upstream mesh grids are much
meshes are compared against each other. The results aredenser than the downstream mesh grids.
also compared with the experimental data of Ref. [15]. AsThe quadratic interpolation is used in the simulations
shown in the figure, the numerical results consistently agreeunless indicated otherwise. The linear interpolation
with each other very well. Also, our numerical results arescheme is also tested against the quadratic interpolation
in good agreement with the experimental data in Ref. [15].to study the effect due to different interpolation schemes.
The maximum relative error between the numerical resultsWith the above configuration of the channel, h 5 16dx ,
and the experimental results is 8.0%. The error can beand the Reynolds number is
attributed to, in part, the asymmetry of the experimental
results in Ref. [15].Re 5

4.8
2t 2 1

.
Figure 3 shows the profiles of ux along the centerline of

the channel obtained using three different meshes. The
For Re 5 26.0, t P 0.5923. quadratic interpolation scheme was used for the uniform

and nonuniform rectangular meshes. The results are also
D. Results of Simulations

compared with the experimental data in Ref. [15]. As
shown in the figure, the numerical results (with square,All our simulations were conducted on a cluster of

IBM RISC/6000 560 workstations at Los Alamos National uniform, and nonuniform rectangular mesh grids) agree
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FIG. 2. The velocity profiles of ux (normalized by U0 ) of the flow in
the 2D symmetric channel with sudden expansion at Re 5 26. The profiles

FIG. 4. The velocity ux (normalized by U0 ) at the symmetric axisare measured at two cross sections of the channel: x/h 5 2.5 in the
(the center line) of the channel, the same as Fig. 3, with various gridrecirculating region, and x/h 5 5.0 out of the recirculating region, respec-
sizes and interpolation schemes. The grid sizes used are rx 5 1, 2, 4, andtively. The thick solid line, the dashed line, and the thin solid line, repre-
8 times of the regular lattice grid size of the normal lattice grid. (rx 5 1sent the numerical results of the LB simulations on the square lattice
is the square lattice mesh, and no interpolation is used in this case.) Themesh grid, the uniform rectangular mesh grid (rx 5 8), and the nonuniform
interpolation schemes applied in the simulations are (a) linear interpola-mesh grid, respectively. The symbols (the squares for x/h 5 2.5, and the
tion and (b) quadratic interpolation, respectively.diamonds for x/h 5 5.0) represent the experimental data in Ref. [15].

the 9-bit LB algorithm on the uniform square mesh gridswith each other very well, and they are in good agreement
(rx 5 ry 5 1), in which no interpolation is used. Figureswith the experimental results.
4a and 4b show the results of the linear and quadraticIn order to study the effects of grid size and interpola-
interpolation, respectively. It is clear that the error due totion, a set of calculations with different grid sizes and inter-
linear interpolation is significant, as shown in Fig. 4a. Thepolation schemes were conducted. Figure 4 shows the pro-
error grows as the grid size increases. The error introducedfiles of ux along the centerline of the channel on uniform
by the quadratic interpolation is small and certainly notrectangular meshes of different grid sizes with both linear
significant for all grid sizes.and quadratic interpolations. For the rectangular meshes,

Table I shows the relative global differences of velocityry is equal to 1, and rx is equal to 2, 4, and 8, respectively.
field (for the flow in 2D channel with sudden expansion)All the results are compared with the result obtained using
due to grid size and interpolation scheme. This difference

TABLE I

The Relative Global Difference of the Velocity Fields
Obtained with Various Meshes and Interpolation Schemes,
Defined by Eq. (11), for the Simulations of the Flow in 2-D
Symmetric Channel with Expansion. The Difference Is Tabulated
vs Different Meshes and Interpolation Schemes.

Interpolation scheme

Mesh Linear Quadratic

FIG. 3. The velocity profile of ux (normalized by U0 ) along the sym- rx 5 2 3.17% 0.20%
metric axis (the center line) of the channel, at Re 5 26.0. The lines rx 5 4 6.90% 0.55%
represent the results by the LB simulations with various meshes, the rx 5 8 11.98% 1.68%
same as in the Fig. 2. The squares represent the experimental data in Nonuniform 10.74% 0.80%
Ref. [15].
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FIG. 5. The contour lines of the stream function for the flow in the 2D symmetric channel with sudden expansion at Reynolds number Re 5

26.0. The values of the contours are 0.0, 60.1, 60.2, 60.3, 60.4, 60.5, 60.535, and 60.55, respectively. The stream function is set to be zero along
the symmetric axis of the channel. The simulation is done by (a) the 9-bit LB model with uniform square lattice, system size 385 3 49; (b) the
proposed new algorithm with uniform rectangular mesh, 49 3 49; and (c) the proposed new algorithm with nonuniform rectangular mesh, 43 3 49.

is computed in reference to the result of uniform square nonuniform mesh. In contrast to the case with uniform
rectangular mesh, there is no significant difference betweenlattice mesh (rx 5 ry 5 1) simulation
the contour lines for the nonuniform rectangular mesh
grids and those for the uniform square mesh grids, evenoi, j iu(Xi, j , t) 2 u0(Xi, j , t)i

oi, j iu0(Xi, j , t)i
, (11) though there is almost one order of magnitude difference

in their system sizes (43 3 49 vs 385 3 49). It should be
pointed out that because the stream function is an integral

where u0 and u are the velocity field computed with square of the velocity field, the error in the velocity is cumulative
lattice mesh and other types of rectangular meshes, respec- and the stream function is more sensitive to numerical
tively, and i · i is the L2 norm. Table I quantitatively shows error than the velocity field.
that the quadratic interpolation is sufficient for the LB
algorithm. The difference is less than 1.0% except the case
of rx 5 8. In contrast, linear interpolation introduces much V. DISCUSSION AND CONCLUSION
larger errors.

We have proposed a new algorithm for implementingFinally, Fig. 5 shows the contour lines of the stream
the lattice Boltzmann method on arbitrary nonuniformfunction for the flow in the symmetric channel with sudden
mesh grids. This has been done by introduction of an addi-expansion at Re 5 26.0, obtained using the three different
tional interpolation step—a type of ‘‘reconstruction step’’meshes. The stream function is set to be zero at the symme-
used in many other numerical schemes (e.g., [22]). Thetry axis of the channel. In the recirculating region near
new algorithm retains all the advantages of the previousentrance, there are visible differences between the contour
lattice Boltzmann method, such as parallelism of thelines for the uniform rectangular mesh with rx 5 8 and
method, ease of the programming, and the capability tory 5 1 (Fig. 5b) and those for other two meshes. Obviously
incorporate microscopic interactions. In addition, it over-the difference is due to the coarseness of the mesh grids.
comes inflexibility of the uniform mesh grids associatedThat is, if the mesh is refined in the recirculation area, the

difference should disappear. This is verified in the case of with the previous lattice Boltzmann algorithms. Numerical
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simulations have verified the accuracy and robustness of directly accessible to us, the data points were digitized
from the experimental data in Fig. 4 in Ref. [15]. Thisthe new algorithm.

Since the proposed LB algorithm uses interpolation, it would inevitably bring some human errors.
is worthwhile to discuss the additional numerical error that
the interpolation step may bring. The numerical accuracy REFERENCES
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